Measurements and searches of Higgs boson production involving fermion couplings with the ATLAS detector

13 April 2021, DIS 2021 Shigeki Hirose (U. Tsukuba)

On behalf of the ATLAS Collaboration

ATLAS experiment

- ATLAS detector: complex of inner tracker, calorimeter and muon spectrometer
- 139 fb⁻¹ data were corrected during Run 2 (2015-18) at 13 TeV
 - x5.6 more data than that collected in Run 1 (2011-2012) at 7-8 TeV

Higgs boson productions at LHC

Vector boson fusion (VBF)

Vector-boson association (VH)

ttH process (ttH)

- ATLAS Run-2 data contains ~80M Higgs bosons!
 - The large statistics allows us to attempt to measure
 - Kinematics of Higgs productions: Simplified Template Cross Section (STXS)
 - \rightarrow Pre-defined binning based on kinematics such as p_{T}^{H} , N_{iets} etc.
 - More challenging or rare processes

Topics of this talk

$H \rightarrow bb$ related topics

- **VBF** production
- **Inclusive boosted Higgs**
- ttH process using $H \rightarrow bb$

Rare processes with leptons

- $H \rightarrow \mu\mu$
- $H \to \ell \ell \gamma$

$H \rightarrow bb$ measurement

- VH process: $Z \to \ell\ell$, $\nu\nu$ or $W \to \ell\nu$ helps to reduce background
 - Already well-established channel with $\sim 7\sigma$ significance
 - STXS measurement achieved for several bins in p_T^V
- Next steps: attempts to access different phase spaces

$\blacksquare H \rightarrow bb$ with VBF process

- Two orthogonal analyses targeting VBF production
 - Photon-tagged: VBF topology with a photon
 - High-E γ + 4 jets (VBF + Higgs decay products) are used for the trigger
 - Inclusive: VBF topo. targeting boosted Higgs: $p_{\rm T}$ > 150 GeV
 - High-E γ is vetoed to assure an orthogonality to the photon-tagged method

of observed signals $\leftarrow \mu_{VBF} = 0.99 \pm 0.30$ (stat.) $^{+0.18}_{-0.16}$ (syst.) to SM expectation (Observed significance of 2.9σ)

Inclusive boosted $H \rightarrow bb$ New!

- Target very high- $p_{\rm T}$ Higgs production
 - Choose at least one large-R jet with two b-tagged subjets
- Multi-jet is a dominant BG, so its shape is checked in VR
- Jet mass reconstruction is validated using V and t resonances

Inclusive boosted $H \rightarrow bb$ New!

- Cross section measured up to the region $p_{
 m T}^H \sim$ 1 TeV $\sigma_H(p_{
 m T}^H >$ 450 GeV) = 13 \pm 52 (stat.) \pm 32 (syst.) \pm 3 (theo.) fb
- Main experimental systematics arise from estimation on jet mass resolution

ttH process has been measured with various final states

 $\sigma \times B$ normalized to SM

- $ttH, H \rightarrow bb$ measurement with $\geq 1\ell$
 - Very challenging mode with a final state containing many jets
 - Already systematically limited
 - → Background Modelling with t is a key of this analysis
- Many signal/control regions to better to control background
 - Also targets STXS measurements

Inclusive result is

$$\mu$$
 = 0.43 ^{+0.20}_{-0.19}(stat.) ^{+0.30}_{-0.27} (syst.) (Observed significance of **1.3** σ ; while 3.0 σ was expected)

• Systematic uncertainties dominated by modelling of $t\bar{t}+b$ background (+0.25 $_{-0.24}$)

Leptonic final states

- Cleaner signature compared with hadronic final states
 - $-H \rightarrow \tau\tau$ is well established with ~20% uncertainty
- Towards rare processes with light leptons such as $H \rightarrow \mu\mu$
 - Although very small BRs, very clean final state may realise observing those processes

- Interesting channel to investigate Yukawa coupling in 2-gen
- Clean final state, but need to handle overwhelming background from $Z/\gamma^* \to \mu\mu$
 - Improve $m_{\mu\mu}$ with recovering an FSR γ from μ
 - Event categorisations with BDT; 20 signal regions

$$\mu = 1.2 \pm 0.6 \text{ (stat.)}^{+0.2}_{-0.1} \text{ (syst.)}$$
 (2.0 o observed [1.7 o expected])

Together with CMS, an evidence of $H \rightarrow \mu\mu$ was observed for the first time!

$H \to \ell\ell\gamma$ New!

• Search for $H \to \ell\ell\gamma$ with $m_{\ell\ell} < 30 \ {\rm GeV}$

13-Apr-2021

- In this $m_{\ell\ell}$ region, $\gamma^* \to \ell\ell$ is dominant
 - → Probing couplings between H and intermediate particles in the loop
- [ee(resolved, merged), $\mu\mu$] \otimes [VBF, non-VBF(high- p_T , low- p_T)] \rightarrow 9 signal regions in total
- Main background: non-resonant $\ell\ell\gamma$
 - Normalisation determined in the fit

A small bump in the signal region

$$\mu$$
 = 1.5 \pm 0.5 (stat.) ^{+0.2}_{-0.1} (syst.) (Observed significance of 3.2 σ)

• First evidence of $H \to (\gamma^* \to \ell \ell) \gamma$

Summary

- Many analyses using full dataset of Run 2 were complete
 - Thanks to the large statistics, precision measurements for the Yukawa couplings in the 3-gen fermions became possible
 - Results are getting more important in the STXS measurements
 - Rare decays such as $H \to \mu\mu$ and $H \to \ell\ell\gamma$ became accessible
- A few more interesting analyses are ongoing
 - $-H \rightarrow cc, H \rightarrow \tau\tau$, LFV decays, ...
 - Combinations of all STXS / coupling measurements based on full Run-2 dataset
- LHC Run-3 operation will start in 2022
 - The data size will be twice larger than what we have
 - → Good opportunity to more precisely understand Higgs properties